Universal Copper Ltd. has completed a comprehensive 3-Dimensional (“3D”) geological modelling initiative to establish the controls on the distribution of higher-grade mineralization at the Company's Poplar Copper Deposit (“Poplar”) which will be used to direct ongoing exploration drilling at Poplar in 2023. This is the first time a 3D geological model has been created for the Poplar deposit and it demonstrates the project has considerable exploration upside potential: Higher-grade copper-molybdenum-gold-silver mineralization is focused along porphyry intrusion contacts;these contact zones have not been the focus of historic exploration drilling; The deposit is open at depth, toward the north and toward the east; Numerous higher-grade targets (porphyry intrusion contacts, step-outs, step-downs, and down-plunge target zones) are present both internal to and adjacent to the Poplar Resource suggesting there is excellent potential to increase the grade and tonnage of the resource; The Poplar deposit is one of the few remaining road accessible porphyry copper-molybdenum-gold-silver deposits in British Columbia with the potential for grade and resource expansion as well as the potential for discovery of additional new porphyry centerswithin the large land position. Recent high-grade intercepts include drill hole 22-PC-138 which cut 214.4 meters at 0.500% CuEq* (0.401% copper, 0.15 g/t gold and 1.27 g/t silver) as well as drill hole 22-PC-137 that contained 0.535% CuEq* (0.353% copper, 0.14 g/t gold and 5.91 g/t silver) over the last 216 metres of the hole.

These recent drill results indicate copper-molybdenum-gold-silver mineralization in new search spaces is extensive, continuous, and controlled by the host rock geology. Prior to this year, a 3D geological model had not previously been developed for the Poplar deposit. The new model will be used to target higher grade mineralization and to increase the size of the deposit through diamond drilling going forward.

New 3D Geological Modeling of the Poplar Resource: Systematic geological modeling was done at the Poplar deposit to identify the controls on copper-molybdenum-gold-silver mineralization, establish the 3D mineral deposit geometry, and to evaluate the distribution and continuity of higher-grade mineralized shoots (Fig. 1). A first pass core re-logging initiative using historical drill core at Poplar demonstrated: 1) higher grade shoots and zones of the deposit are controlled by intrusive, volcanic, and sedimentary contacts, and 2) the overlap in the distribution of mineralization-distal (quartz-sericite-pyrite) and mineralization-proximal (K feldspar and biotite) alteration assemblages suggest the deposit is the product of two or more overlapping copper-molybdenum-gold-silver porphyry systems (telescoping).

Based on this new understanding, the 3D modeling work was constrained by updated lithogeochemical characterization of rock types, modeling of rock type distribution, and by the zonation of alteration minerals and metals.