Bruker Corporation announced that three institutions are now accelerating their research into functional structural biology and human disease with new Bruker ultra-high field nuclear magnetic resonance (NMR) spectrometers installed in 2020. Novel GHz-class NMR technology enables advanced research to obtain structural, functional and binding information of intrinsically disordered proteins (IDPs), and of partially structured proteins with key intrinsically disordered regions (IDRs), at atomic resolution under near-physiological conditions. For example, these new technological and methods capabilities now accelerate research into viral-host interactions and viral replication, as well as into proteins that are linked to neurodegenerative diseases. The recent installation of a 1.2 GHz NMR spectrometer at the Max Planck Institute for Biophysical Chemistry in Goettingen, has already enabled their research teams to deliver new insights into the SARS-CoV-2 nucleocapsid (N) protein, and it is set to aid the deeper molecular understanding of Parkinson’s and Alzheimer’s diseases. Bruker's 1.2 GHz NMR magnets utilize a novel hybrid technology with high-temperature superconductor (HTS) inserts in low-temperature superconductor outer sections. The Ascend™ 1.2 GHz magnets are stable, homogenous, standard-bore (54 mm) magnets suitable for high-resolution and solid-state NMR. Using ultra-high field NMR, scientists at the Max Planck Institute (MPI) and the German Center for Neurodegenerative Diseases (DZNE) have shown that the SARS-CoV-2 N protein and host ribonucleic acids (RNA) jointly condense into tiny droplets akin to membraneless organelles, when the virus enters a host cell. This fast liquid-liquid phase separation (LLPS) inside the cytoplasm of the host cell is a characteristic capability of IDPs and IDRs, and sheds new light on how the virus replicates, and offers new targets for drug development.