Bruker Corporation announced the successful installation of a 1.2 GHz NMR spectrometer at the Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin, accepted in the second quarter of 2024. This ultra-high field NMR system positions FMP among leading institutions worldwide with access to 1.2 GHz NMR, enabling breakthrough biomolecular research. Ultra-high field NMR is a vital tool in pharmacology research, providing unique insights into molecular dynamics and structural rearrangements related to drug-target binding, protein interactions, and macromolecular structure refinements and rearrangements.

Intrinsically disordered proteins (IDPs) play key roles in cell biology, such as IDPs implicated in cancer and infectious diseases. IDPs can be studied in depth using GHz-class NMR, by taking advantage of increased resolution of 1.2 GHz NMR. Researchers can gain an understanding of the conformational dynamics and function of IDPs to unlock the secrets of these important proteins and their role in diseases. This makes 1.2 GHz NMR a powerful tool for advancing understanding of cellular and disease biology, and the development of therapies.

The Leibniz Forschungsinstitut für Molekulare Pharmakologie is a respected research institute committed to advancing the field of molecular pharmacology through groundbreaking research and innovation. Since 1995, the institute has integrated eleven NMR systems, including the recently installed 1.2 GHz AVANCE NMR spectrometer. The new device will serve FMP groups that are dedicated to advancing the molecular basis of pharmacological therapies by characterizing novel active compounds and mechanisms of action prior to drug development.

Professor Adam Lange, Head of the Structural Biology Department, and his group focus on membrane proteins in native-like lipid bilayers and supramolecular assemblies.