Presented at the SITC 38th Annual Meeting, 3-5 November 2023, San Diego, CA, USA, and online

Abstract 1145

Lymph Node Targeted AMP-peptide Vaccines Generate Functional

T cell Immunity Against Mutant p53 and BRAF

Martin P. Steinbuck1, Xavier Cabana-Puig1, Erica Palmer1, Mimi M. Jung1, Thomas Williams1, Kristen Osaer1, Jeff Zhang1,

Christopher M. Haqq1, and Peter C. DeMuth1

1 Elicio Therapeutics, Inc. 451 D St., Ste 501, Boston, MA 02210

Clinical Relevance: p53 and BRAF Mutations in Cancer

Repeat-dose Immunization Strategy

ELI-008 Is Designed to Target >30% of p53 Mutations

Mutant p53

Nearly 60% of human tumors exhibit dysregulated p53[1]

including mutations, copy number alterations, upstream deregulation

~50% of those tumors have missense mutations in p53[2,3]

Annual incidence: 5.2M patients worldwide and 700K patients in the US

Prevalent in nearly all tumor types; sign of advanced disease Poor clinical prognosis[4]

p53 Mutations by Cancer Type

Estimated Worldwide Annual Incidence[2,3]

Brain

Mutant BRAF

Mutations are concentrated in one hotspot[5-11]

Up to 97% of BRAF mutations occur at the V600 location

High prevalence in melanoma and thyroid tumors[10,11]

Overall, BRAF mutations are present in 8% of solid tumors Representing approx. 1 million cases globally each year

BRAF Mutation Hotspots

Melanoma[11]Thyroid[5]

5%

8%

V600E

V600E

V600K

V600X

Other

Preclinical Murine Doses:

Mutant

% Patients

AMP-CpG

AMP-Peptide

1

R248W

3.53%

Day

Day

Day

Day

Day

Day

ELI-007

10 nmol

+

20 nmol

2

R248Q

4.37%

Schema

C57BL/6

-ELI008

Adjuvant [TLR9 Agonist]

3

R175H

5.60%

1

7

14

21

28

35

ELI-008

5 nmol

+

1.25 nmol

Potential candidates: 12 of the most

4

R273H

3.95%

ICS, Luminex

AMP-CpG 7909

*Dose

Preclinical Assays:

5

R273C

3.31%

~30% of all

Antigen [30mer Peptides]

6

R282W

2.83%

patients with

ELISpot, FluoroSpot

AMP-p53 Mutant Peptides

7

G245S

2.11%

Assay

Spleen

p53 mutations

8

R249S

2.04%

Blood

ICS

frequently occurring p53 mutations[21].

9

Y220C

1.83%

*Control groups were immunized with equivalent amounts

10

C135Y

0.43%

Lung

ELISpot, ICS

of unmodified "soluble (SOL)" CpG and antigen peptide.

11

R158H

0.52%

12

H214R

0.39%

Ovary

Total Cancer Incidence

Melanoma

Kidney

Leukemia

~30%

Pancreas

Non-Hodgkin

Bladder

~60%

Thyroid

Esophagus

p53 Mutation

Cervix

Liver

p53 Dysregulation

Stomach

Prostate

Colorectum

Lung

Breast

1

2

Incidence of most common cancers

(in millions)

84%

Other

95%

Most Frequently BRAF-Mutated Cancer Types[10]

100%

Hairy Cell

Leukemia[7]

Thyroid[6]

60%

11%

Melanoma[8]Colorectal[9]

54%

ELI-007 is Designed to Address ~95% of BRAF Mutations

007

Adjuvant [TLR9 Agonist]

Mutant

% Patients

1

V600E

~90%

AMP-CpG 7909

2

V600K

~5%

ELI-

Antigen [29mer Peptides]

AMP-BRAF V600E

~95% of all patients

AMP-BRAF V600K

with BRAF mutations

ELI-007 Generates Strong Immune Responses to V600E and V600K

AMP-p53 R248W Produces Strong T Cell Responses in Mice

The 10mer, 18mer, and 30mer AMP-peptides are centered around the same R248W mutation.

T Cell IFNγ Response: Spleen Day 21

T Cell IFNγ Response: Spleen Day 35

Stim: p53 R248W OLPs

Stim: p53 R248W OLPs

splenocytes

12000

splenocytes

25000

7000

15000

2000

>9x

>50x

>28x

>26x

>530x

>10x

2000

6

6

10000

/ 1x10

/ 1x10

1500

1000

SFC

SFC

5000

500

IFNγ

IFNγ

0

0

Therapeutic Vaccination: Benefits of Targeting Mutated p53 & BRAF

Peptide

SOL AMP SOL AMP SOL AMP

Peptide

SOL AMP SOL AMP SOL AMP

Truncal Mutation

Driver Mutation

High Prevalence

Public Neoantigen

Proven Clinical MOA

Mutant p53

Mutant BRAF

These mutations are present early on in tumor progression and shared among all progeny as they apply positive selection for survival in the cancer cell population and allow for clonal expansion[12].

Signaling is required for tumor survival and growth, making loss of

these mutations unlikely, thus preventing immune escape.

Major driver in [10]

Occurs in nearly all types of

100% of hairy cell leukemia

tumors and is involved in

60% of thyroid cancer

~30% of overall cancer cases[3].

54% of melanoma

11% of colorectal cancer

Mutant peptides are not centrally tolerized;

cognate TCRs are present in naïve repertoire[13-16]

Mutant p53- and BRAF-specific T cells are

known to mediate anti-tumor efficacy[14,15]

T Cell IFNγ Response: Spleen Day 21

T Cell IFNγ Response: Spleen Day 21

splenocytes

Stim: BRAF V600E OLPs

splenocytes

Stim: BRAF V600K OLPs

1200

1000

900

800

6x

5x

11x

4x

7x

6x

600

6

6

1x10

600

1x10

400

/

/

SFC

300

SFC

Antigen

Mock

18mer

30mer

Antigen

Mock

18mer

30mer

10mer

10mer

Longer antigen peptides contain greater numbers of potential epitopes, increasing the probability of a strong immune response in various HLA haplotypes.

Potent T cell responses are observed after only two doses with AMP-p53 R248W, which are further improved upon after a third bi-weekly dose.

200

IFNγ

IFNγ

0

0

Peptide

SOL AMP

SOL AMP SOL AMP

Peptide

SOL AMP

SOL AMP SOL AMP

Mock

V600E +

Mock

V600E +

Antigen

V600E

V600K

Antigen

V600E

V600K

V600K

V600K

T cell responses are detectable after only two doses of the AMP-BRAF V600E, V600K, and combination (ELI-007) vaccines.

T Cell IFNγ Response: Spleen Day 35

T Cell IFNγ Response: Spleen Day 35

splenocytes

Stim: BRAF V600E OLPs

splenocytes

Stim: BRAF V600K OLPs

20000

15000

15000

10000

10000

24x

18x

10000

27x

10x

16x

11x

6

7500

6

7500

1x10

1x10

5000

5000

/

/

12000

6

10000

/SFCCytokine1x10

splenocytes

8000

6000

4000

2000

0

Peptide

Antigen

Overlay

Percent Polyfunctional

T Cell Cytokine Response: Spleen Day 35

Stim: p53 R248W OLPs

Triple+

IFNγ+ IL2+

IFNγ+ TNFα+

IL2+

TNFα+

IFNγ+

Mock

SOL

AMP

SOL

AMP

SOL

AMP

10mer

18mer

30mer

1x10/SFCCytokine

lymphocytesresident-lung

8000

6

6000

4000

2000

0

Peptide

Antigen

Overlay

Percent Polyfunctional

T Cell Cytokine Response: Lung Day 35

Stim: p53 R248W OLPs

Triple+

IFNγ+ IL2+

IFNγ+ TNFα+

IL2+

TNFα+

IFNγ+

Mock

SOL AMP SOL AMP SOL AMP

10mer

18mer

30mer

1 Cytokine

2 Cytokines

3 Cytokines

SFC

2500

SFC

2500

IFNγ

0

IFNγ

0

Peptide

SOL AMP

SOL AMP SOL AMP

Peptide

SOL AMP

SOL AMP SOL AMP

Mock

V600E +

Mock

V600E +

Antigen

V600E

V600K

Antigen

V600E

V600K

Vaccine:

5000

pg/ml

Multiplexed Immune Proteomics: Spleen Day 35

Stim: p53 R248W OLPs

R248W 10mer

R248W 18mer

R248W 30mer

200

30000

2000

100000

Mock

SOL

AMP

Mock

SOL

AMP

Mock

SOL

AMP

80000

2500

2000

[IL2,

The AMP-Platform Delivers Cargo Directly to the Lymph Nodes[17,18]

Smart trafficking to the lymph nodes after subcutaneous dosing generates immune responses with increased magnitude, function, and durability.

Takes advantage of potent lymph node immune mechanisms, including activation of innate and adaptive immune cells, antigen-spreading,and improved tumor T cell trafficking / infiltration.

Mutant p53/BRAF peptides provide validated antigens for application of the Amphiphile platform.

Lymph node delivery of potent adjuvants minimizes systemic exposure to improve safety.

Lymph Node Biodistribution

AMP Platform Design

120

O

O

x

Nodes

Antigen

Albumin Binding Lipid

Peptide Antigen

PEG Linker

100

Albumin

O

(65 kDa)

O

Lymph

80

60

O

Dose% in

40

Adjuvant

NH

O

NH

20

Peptide Antigens

Albumin Binding Lipid

CpG-DNA

0

Molecular Adjuvants

0

20

40

60

80

Molecular Weight (kDa)

AMP MOA

Tissue Injection Site

Lymph Node

Amphiphiles

Endogenous Albumin

Albumin-bound Amphiphiles

1 Subcutaneous

2

Albumin

3

Lymph node

4

Adaptive

injection

binding

targeting

immune response

Biodistribution of AMP Vaccines[17]

Soluble CpG

AMP-CpG

2

T Cells B Cells

T Cells B Cells

0h

24h

1

lymph node

lymph node

3.3nmol

AMP-CpG-FITC or

Soluble CpG-FITC

Clinical Experience[19,20]

ELI-002,an AMP-vaccinetargeting mKRAS, is currently being investigated in clinical trials for treatment of pancreatic and colorectal cancer (AMPLIFY-201: NCT04853017 and AMPLIFY-7P: NCT05726864).

ELI-002has shown preliminary safety / tolerability, and significant increases in mKRAS T cell responses, associated with reduction / clearance of tumor biomarkers, and reduced risk of progression and death.

Vaccine candidates targeting mutant p53 / BRAF have been built from the AMP-platform, and utilize the ELI-002 adjuvant, AMP-CpG, providing the potential for favorable clinical tolerability and activity.

V600K

V600K

Further immunization with the AMP-BRAF vaccines increases the T cell response substantially.

Polyfunctional T Cell Responses: Cytokines and Granzyme

Left Y-Axes

4000

γ, GzmB]

3000

2000

[IFN

1000

0

150

1500

20000

60000

100

1000

40000

10000

50

500

20000

GM-CSF

0

0

GM-CSF

0

0

GM-CSF

IFNγ

TNFα

IL2

GzmB

IFNγ

TNFα

IL2

GzmB

IFNγ

TNFα

IL2

GzmB

Mock

2

Mock

2

Mock

2

1

1

1

SOL

0

SOL

0

SOL

0

-1

-1

-1

1500

1000

500

0

Baseline Average Z-

TNFα, GM-CSF]

Right Y-Axes

pg/ml

Rel. Protein

Multiplexed Immune Proteomics: Spleen Day 35

Stim: BRAF V600 OLPs

AMP

AMP

AMP

-2

-2

-2

Subtracted score

Expression

Vaccine:

80000

Mock

Axes-YLeftpg/mlGzmB],γ

60000

15000

10000

[IFN

5000

0

IFNγ

Mock

SOL

AMP

V600E

SOL

TNFα

IL2

GM-CSF

V600K

V600E + V600K

1500

1500

AMP

40000

Mock

SOL

AMP

40000

Mock

SOL

AMP

10000

10000

1000

1000

7500

500

5000

500

5000

2500

0

0

GM-CSF

0

0

GM-CSF

GzmB

IFNγ

TNFα

IL2

GzmB

IFNγ

TNFα

IL2

GzmB

1 . 5

Mock

1.5

Mock

1.5

0

SOL

0

SOL

0

- 1 . 5

AMP

-1.5

AMP

-1.5

400

300

200

100

0

Average ZBaseline Subtracted -score

[IL2, TNFα, GM-CSF]

Right Y-Axes

pg/ml

Rel. Protein Expression

Polyfunctional T cells reside not only in secondary lymphoid tissues like spleen, but in peripheral organs such as the lung, which is one of the predominant sites for metastatic spread in melanoma and colorectal carcinoma.

AMP-p53 R248W Generates Cytotoxic T Cells

T Cell Cytotoxic Response: Spleen Day 35

In Vivo Target Cell Killing: Spleen Day 35

splenocytes

Stim: p53 R248W OLPs

Stim: p53 R248W OLPs

20000

80

54%

46%

Killing

Low [Tag-it Violet]

Unspecific Targets

15000

36x

14x

20x

60

High [Tag-it Violet]

p53-specific Targets

6

% Target Cell

SFC / 1x10

10000

40

Mock

5000

20

52%

48%

74%

26%

Cytotoxic Response: Spleen Day 35

Cytotoxic Response: Spleen Day 35

Stim: BRAF V600E OLPs

Stim: BRAF V600K OLPs

cells

12

cells

8

CD3+

2.4x

2.7x

1.9x

CD3+

6

2.1x

2.2x

2.4x

among

8

among

4

GzmB+%

4

GzmB+%

2

BL

BL

0

0

Peptide

SOL AMP SOL AMP SOL AMP

Peptide

SOL AMP

SOL AMP

SOL AMP

Mock

V600E +

Mock

V600E +

Antigen

V600K

Antigen

V600E

V600K

V600E

V600K

V600K

Polyfunctional T cells induced by AMP-BRAF vaccines produce high levels of cytokines as well as cytolytic GzmB.

AMP enhances vaccine potency via targeted lymph node delivery.

MESSAGES

ELI-007 and ELI-008 substantially improved T cell responses over

soluble comparator vaccines:

Polyfunctional T cells that produce TH1-associated cytokines:

HOME

(IFNγ / TNFα / IL2 / GM-CSF).

Secretion of Granzyme B, potent cytolytic function

AMP-vaccines have the potential to address a high, unmet medical

TAKE

need for millions of patients with BRAF / p53 mutations annually.

The AMP-platform technology is simple, rapid and scalable for broad

clinical application.

GzmB

0

0

Peptide

SOL AMP SOL AMP SOL AMP

SOL AMP

Antigen

Mock

18mer

30mer

Mock

SOL

AMP

10mer

18mer

AMP-p53 R248W generates GzmB producing, cytotoxic T cells capable of killing p53 R248W-pulsed target cells in vivo.

AMP-vaccination Generates Immunity to Common p53 Mutants

T Cell IFNγ Response: Spleen Day 35 Stim: respective p53 OLPs

R248W

R175H

R273H

G245S

splenocytes

25000

splenocytes

8000

splenocytes

splenocytes

2000

6000

6000

15000

10x

3000

70x

3000

100x

1500

7x

6

6

6

6

1x10/

10000

1x10/

2000

1x10/

2000

1x10/

1000

SFCγ

5000

SFCγ

1000

SFCγ

1000

SFCγ

500

IFN

0

IFN

0

IFN

0

IFN

0

Mock

SOL

AMP

Mock SOL

AMP

Mock

SOL AMP

Mock SOL

AMP

splenocytes

Y220C

splenocytes

C135Y

splenocytes

R158H

splenocytes

H214R

15000

21000

25000

18x

5x

2000

37x

8x

10000

20000

10000

6

7500

6

15000

6

6

1x10

1x10

1x10

1x10

5000

10000

1000

/

/

/

/

5000

SFC

SFC

SFC

SFC

2500

5000

IFNγ

IFNγ

IFNγ

IFNγ

0

0

0

0

Mock SOL

AMP

Mock SOL

AMP

Mock SOL AMP

Mock SOL

AMP

8 candidate p53 mutant 30mer AMP-peptides elicit strong T cell responses upon immunization, demonstrating the versatility, ease of application and potency of the AMP-platform.

References

6.

Agrawal N, et al. Cell. (2014) 159:676-90

14.

Yu Y, et al. Hum Vaccin Immunother. (2022) 18(1):1-11.

Funded by:

7.

Ahmadzadeh A, et al. Oncol Rev. (2014) 8(2):253

15.

Veatch JR, et al. J Clin Invest. (2018) 128(4):1563-68.

1.

Ciriello G, et al. Nat Genetics. (2013) 45(10):1127-33

8.

Hodis E, et al. Cell. (2012) 150(2):251-63

16.

Sharkey MS et al. Cancer Res. (2004) 64(5):1595-9

2.

IARC Global Cancer Observatory. gco.iarc.fr. 2023

9.

CGNA, et al. Nature. (2012) 487, 330-337.

17.

Liu H, et al. Nature. (2014) 27;507(7493):519-22

3.

The TP53 Database. tp53.isb-cgc.org. 2023

10.

Yi Q, et al. Front Bioeng Biotechnol. (2022) 10:806851

18.

Moynihan KD, et al. Nat Med. (2016) 22(12):1402-1410

4.

Robles AI, et al. CSH Perspect Biol. (2010) 2(3):a001016

11.

Ihle MA, et al. BMC Cancer. (2014) 10;14:13

19.

O'Reilly EM, et al. J Clin Oncol. (2023) 41(16): 2528

5.

Nikiforov YE, et al. Mod Pathol. (2011) 24 Suppl 2:S34-43

12.

Levine, A.J. Oncogene (2021) 40, 5975-5983

20.

Wainberg Z, et al. AACR Pancreatic (2023)

13.

Houbiers JG, et al. Eur J Immunol. (1993) 23(9):2072-7

21.

Baugh EH, et al. Cell Death Differ. (2018) 25(1):154-160

Attachments

  • Original Link
  • Original Document
  • Permalink

Disclaimer

Elicio Therapeutics Inc. published this content on 03 November 2023 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 10 November 2023 14:37:54 UTC.